Sunday 1 December 2013

Muscae Volitantes (Floater) - The Antioxidants to prevent floater

Muscae volitantes or Floater is defined as a condition of pathol moving black specks or threads seen before the eyes, as results of opaque fragments floating in the vitreous humour or a lens defect due to degeneration of the vitreous humour.  Floater as it suspends in the vitreous humour, it tends to drift  and follows the rapid motions of the eye as a result of damage of the eye that causes material to enter the vitreous humour.
Antioxidants to prevent floater(20)
1. Antioxidant enzymes 
a. Super oxide dismutase (both Cu-Zn and Mn)
Super oxide dismutase is an important antioxidant defense in nearly all cells exposed to oxygen by converting superoxide into oxygen and hydrogen peroxide depending on the metal cofactor such as both Cu-Zn and Mn.
b. Glutathione peroxidase
The function of glutathione peroxidase is to protect the organism from oxidative damage by reducing lipid hydroperoxides, an oxidation of lipid cell membranes which can easily break and form free radicals of the form RO and converting free hydrogen peroxide to oxygen and water.


c. Glutathione reductase
Glutathione reductase, an enzyme reduces pair of sulfur atoms glutathione to the a organosulfur compound form of antioxidant (consisting of three amino acids joined by peptide bonds) which helps to prevent damage of important cellular components caused by free radicals and peroxides.
d. Etc.
2. Metals binding proteins(21)
a. Ceruloplasmin
Ceruloplasmin, the major copper-carrying protein in the blood plays a role in iron metabolism. It prevents the oxidation that leads to the forming of oxidation from Fe2+ (ferrous iron) into Fe3+ (ferric iron) by exhibiting a copper-dependent oxidase activity, causing mutations in the ceruloplasmin gene cause of iron overload in the brain, liver, pancreas, and retina.


b. Ferritin
Ferritin, the protein produced by almost all living organisms, acts as a component to fight against iron deficiency and iron overload, keep in a soluble and non-toxic form and transport it to the body needs, including organs. It enhances the immune system in the presence of an infection or cancer and prevent the infectious agent attempts to bind iron to become free radicals by migrating from the plasma to within cells.
c. Etc.

3. Common Free Radical Scavengers 
a. Vitamin A
Vitamin A occurs in the form retinol and is best known for its function in maintaining the health of cell membrane, hair, skin, bone, teeth and eyes. It also plays an important role as an antioxidant as it scavenges free radicals in the lining of the mouth and lungs; prevents its depletion in fighting the increased free radicals activity by radiation; boosts immune system in controlling of free radicals; prevents oxidation of LDL and enhances the productions of insulin pancreas.


b. Vitamin C
Vitamin C beside plays an important role in formation and maintenance of body tissues, it as an antioxidant and water soluble vitamin, vitamin C can be easily carry in blood, operate in much of the part of body. By restoring vitamin E, it helps to fight against forming of free radicals. By enhancing the immune system, it promotes against the microbial and viral and irregular cell growth causes of infection and inflammation.
Vitamin C also is a scavenger in inhibiting pollution cause of oxidation.


c. Vitamin E
Vitamin E is used to refer to a group of fat-soluble compounds that include both tocopherols and tocotrienols discovered by researchers Herbert Evans and Katherine Bishop. It beside is important in protecting muscle weakness, repair damage tissues, lower blood pressure and inducing blood clotting in healing wound, etc, it also is one of powerful antioxidant, by moving into the fatty medium to prevent lipid peroxidation, resulting in lessening the risk of chain reactions by curtailing them before they can starts.


d. Vitamin D
Reseacher found that vitamin D, a group of fat-soluble secosteroids is also a membrane antioxidant, with the ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol.

e. Etc.

No comments:

Post a Comment