Super Affiliates

Permanent Unwanted Tattoo Removal by Tattoo Expert

Permanent Unwanted Tattoo Removal by Tattoo Expert
Safely, Painlessly, Laserlessly and Naturally in Removing any Unwanted Tattoos in 2 to 8 Weeks, Guaranteed

Monday, 2 December 2013

Hydrocephalus Preventions - The Phytochemicals

Hydrocephalus, also known as "water in the brain" is defined as complex and multifactorial neurological disorders of accumulation of cerebrospinal fluid (CSF) in the cavity of brain of that can lead to intracranial pressure inside the side, resulting of brain trauma, stroke, infection, tumor, etc.
Preventions
Other than structures abnormalities caused by genetic defects, accidence, etc., most acquired hydrocephalus can be prevented by enhancing the immune system in fighting against forming of free radicals causes of irregular cells growth and foreign invasion such virus and bacteria and reduce the risk of diseases cause of Hydrocephalus, such as dementia.

Phytochemicals to prevent Hydrocephalus 
C.1. Rosemarinol, is a phytochemical monophenols, found in essential oil of labiate herbs like Rosemary and also in variety of other plants.
1. Chemical stabilization of fish oil
In the study of fish oil undergoes multiple changes in its physical properties and its autoxidation occurred found that rosemary extract rich in carnosic acid to ternary blends of tocopherols, ascorbyl palmitate and lecithin or Citrem significantly retarded autoxidation, according to "Chemical stabilization of oils rich in long-chain polyunsaturated fatty acids during storage" by Pop F.

2. Anti-inflammatory effects
In the research of the extract of rosemary leaves from supercritical fluid extraction and its anti inflammatory effects found that the yield of 3.92% and total phenolics of 213.5 mg/g extract obtained from the most effective extraction conditions showed a high inhibitory effect on lipid peroxidation (IC(50) 33.4 μg/mL). Both the SC-CO(2) extract and CA markedly suppressed the LPS-induced production of nitric oxide (NO) and tumor necrosis factor-α (TNF-α), as well as the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), phosphorylated inhibitor-kappaB (P-IκB), and nuclear factor-kappaB (NF-κB)/p65 in a dose-dependent manner, according to the study of "Anti-inflammatory effects of supercritical carbon dioxide extract and its isolated carnosic acid from Rosmarinus officinalis leaves" by Kuo CF, Su JD, Chiu CH, Peng CC, Chang CH, Sung TY, Huang SH, Lee WC, Chyau CC.(51)

3. Supercritical fluid
In the investigation of rosemary extract could enhance antioxidant defenses and improve antioxidant status in aged rats found that rosemary extract produced a decrease in antioxidant enzyme activity, lipid peroxidation and ROS levels that was significant for catalase activity in heart and brain, NOS in heart, and LPO and ROS levels in different brain tissues. These observations suggest that the rosemary supplement improved the oxidative stress status in old rats, according to "Protective effect of supercritical fluid rosemary extract, Rosmarinus officinalis, on antioxidants of major organs of aged rats" by Posadas SJ, Caz V, Largo C, De la Gándara B, Matallanas B, Reglero G, De Miguel E.(52)

C.2. Gingerole
Gingerole, is also known as gingerol, a phytochemical of Flavonoids (polyphenols) found in fresh ginger. and in variety of other plants. The herb has been used to treat nausea and vomiting of pregnancy, motion sickness, rheumatoid arthritis, relieve migraine, etc.
1. Antioxidant and anti-inflammatory effects
In the investigation of the effectiveness of chemical constituents of Zingiber officinale Rosc. (Zingiberaceae)in treating oxidative stress found that compounds [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol of the herb scavenges of 1,1-diphenyl-2-picyrlhydrazyl (DPPH), superoxide and hydroxyl radicals, inhibitsof N-formyl-methionyl-leucyl-phenylalanine (f-MLP) induced reactive oxygen species (ROS) production in human polymorphonuclear neutrophils (PMN), lipopolysaccharide induced nitrite and prostaglandin E(2) production in RAW 264.7 cells, according to the study of "Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol" by Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN(53)

2. Dementia
In the study of Ginger effectiveness in treating dementia in South Asia with A 70% aqueous/methanolic extract of dried ginger (Zo.Cr) was used. Zo.Cr tested positive for the presence of terpenoids, flavonoids, secondary amines, phenols, alkaloids and saponins found that
specific inhibition of butyrylcholinesterase (BuChE) rather than acetylcholinesterase enzyme. Different pure compounds of ginger also showed spasmolytic activity in stomach fundus, with 6-gingerol being the most potent. 6-Gingerol also showed a specific anti-BuChE effect, according to "Muscarinic, Ca(++) antagonist and specific butyrylcholinesterase inhibitory activity of dried ginger extract might explain its use in dementia" by Ghayur MN, Gilani AH, Ahmed T, Khalid A, Nawaz SA, Agbedahunsi JM, Choudhary MI, Houghton PJ.(54)

C.3.  Naringenin
Naringenin, a flavanone, belonging to the red, blue, purple pigments of Flavonoids (polyphenols) found predominantly in citrus fruits is considered as one of powerful antioxiant with many health benefits.
1. Antioxidant, radical scavenging and biomolecule activity
In the affirmation of the capacity of flavonoid naringenin and its glycoside naringin in the comparison of theirs antioxidant capacities, radical scavenging and biomolecule activities found that naringenin exhibited higher antioxidant capacity and hydroxyl and superoxide radical scavenger efficiency than naringin and both flavanones were equally effective in reducing DNA damage. However, they show no protective effect on oxidation of GSH, according to the study of "Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study" by Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, Ortega N, Perez-Mateos M, Muñiz P.(55)

2. Anti-inflammatory effects
In the evaluation of the mechanisms of action of the effective compounds. Flavone, the isoflavones daidzein and genistein, the flavonols isorhamnetin, kaempferol and quercetin, the flavanone naringenin, and the anthocyanin pelargonidin amd theirs anti-inflammatory effects found that they inhibited iNOS protein and mRNA expression and also NO production in a dose-dependent manner, according to "Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages" by Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E.(56)

3. Immunity
In the unvestigation of Naringenin, a flavonoid in grapefruits and citrus fruits and its effec in immune system found that naringenin potently suppressed picryl chloride (PCl)-induced contact hypersensitivity by inhibiting the proliferation and activation of T lymphocytes. In vitro, both of the activated hapten-specific T cells and the T cells stimulated with anti-CD3/anti-CD28 showed growth arrest after naringenin treatment, according to "A novel regulatory mechanism of naringenin through inhibition of T lymphocyte function in contact hypersensitivity suppression" by Fang F, Tang Y, Gao Z, Xu Q.(57)

C.4.  Tangeritin
Tangeritin, one of the flavones, is found in tangerine and many citrus peels
1. Neuroprotective effects
In the evaluation of neuroprotective effects of a natural antioxidant tangeretin, a citrus flavonoid and its effect on Parkinson's disease found that tangeretin crosses the blood-brain barrier. The significant protection of striato-nigral integrity and functionality by tangeretin suggests its potential use as a neuroprotective agent, according to "Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson's disease" by Datla KP, Christidou M, Widmer WW, Rooprai HK, Dexter DT.(58)

2. Antioxidants
In the comparison of hand-pressed juice of polymethoxylated flavones (PMFs) and flavanone glycosides (FGs) and the peeled fruit of 'Sainampueng' tangerines ( Citrus reticulata Blanco cv. Sainampueng) antioxidant effects found that hand-pressed juice of C. reticulata Blanco cv. Sainampueng serves as a rich source of PMFs, FGs, carotenoids, and antioxidants: 4-5 tangerine fruits ( approximately 80 g of each fruit) giving one glass of 200 mL hand-pressed juice would provide more than 5 mg of nobiletin and tangeretin and 36 mg of hesperidin, narirutin, and didymin, as well as 30 mg of ascorbic acid, >1 mg of provitamin A active beta-cryptoxanthin, and 200 microg of alpha-tocopherol, according to "Polymethoxylated flavones, flavanone glycosides, carotenoids, and antioxidants in different cultivation types of tangerines ( Citrus reticulata Blanco cv. Sainampueng) from Northern Thailand" by Stuetz W, Prapamontol T, Hongsibsong S, Biesalski HK.(59)

C.5. Etc.  


Chinese Secrets To Fatty Liver And Obesity Reversal
Use The Revolutionary Findings To Achieve 
Optimal Health And Loose Weight

Super foods Library, Eat Yourself Healthy With The Best of the Best Nature Has to Offer

Back to General health http://kylejnorton.blogspot.ca/p/general-health.html

Back to Kyle J. Norton Home page http://kylejnorton.blogspot.ca  
Sources

(51) http://www.ncbi.nlm.nih.gov/pubmed/21375325
(52) http://www.ncbi.nlm.nih.gov/pubmed/19289162
(53) http://www.ncbi.nlm.nih.gov/pubmed/19833188
(54) http://www.ncbi.nlm.nih.gov/pubmed/18812031
(55) http://www.ncbi.nlm.nih.gov/pubmed/20394007
(56) http://www.ncbi.nlm.nih.gov/pubmed/18274639
(57) http://www.ncbi.nlm.nih.gov/pubmed/20471963
(58) http://www.ncbi.nlm.nih.gov/pubmed/11726811
(59) http://www.ncbi.nlm.nih.gov/pubmed/20420369