Monday 2 December 2013

Hydrocephalus Preventions - The Antioxidants

Hydrocephalus, also known as "water in the brain" is defined as complex and multifactorial neurological disorders of accumulation of cerebrospinal fluid (CSF) in the cavity of brain of that can lead to intracranial pressure inside the side, resulting of brain trauma, stroke, infection, tumor, etc.
Preventions
Other than structures abnormalities caused by genetic defects, accidence, etc., most acquired hydrocephalus can be prevented by enhancing the immune system in fighting against forming of free radicals causes of irregular cells growth and foreign invasion such virus and bacteria and reduce the risk of diseases cause of Hydrocephalus, such as dementia.

Antioxidants to prevent Hydrocephalus(60)
D.1. Antioxidant enzymes
Antioxidant enzymes are chemical substances found in plants that can protect the body from damage of free radicals by terminating the chain reactions by removing free radical intermediates and inhibiting other oxidation reactions.
1. Catalase
Catalase is an enzyme, found in most living organisms that are exposed to oxygen helped to converse hydrogen peroxide (free radicals) to water and oxygen as a rate of 40 million molecules of hydrogen peroxide to water and oxygen each second, using either an iron or manganese cofactor.

2. Glutathione peroxidase
The function of glutathione peroxidase is to protect the organism from oxidative damage by reducing lipid hydroperoxides, an oxidation of lipid cell membranes which can easily break and form free radicals of the form RO and converting free hydrogen peroxide to oxygen and water.

3. Glutathione reductase
Glutathione reductase, an enzyme reduces pair of sulfur atoms glutathione to the a organosulfur compound form of antioxidant (consisting of three amino acids joined by peptide bonds) which helps to prevent damage of important cellular components caused by free radicals and peroxides.

4. Super oxide dismutase (both Cu-Zn and Mn)
Super oxide dismutase is an important antioxidant defense in nearly all cells exposed to oxygen by converting superoxide into oxygen and hydrogen peroxide depending on the metal cofactor such as both Cu-Zn and Mn.

D.2. Metals binding proteins 
1. Ceruloplasmin
Ceruloplasmin, the major copper-carrying protein in the blood plays a role in iron metabolism. It prevents the oxidation that leads to the forming of oxidation from Fe2+ (ferrous iron) into Fe3+ (ferric iron) by exhibiting a copper-dependent oxidase activity, causing mutations in the ceruloplasmin gene cause of iron overload in the brain, liver, pancreas, and retina.

2. Ferritin
Ferritin, the protein produced by almost all living organisms, acts as a component to fight against iron deficiency and iron overload, keep in a soluble and non-toxic form and transport it to the body needs, including organs. It enhances the immune system in the presence of an infection or cancer and prevent the infectious agent attempts to bind iron to become free radicals by migrating from the plasma to within cells.

3. Lactoferrin
Lactoferrin, a multifunctional protein of the transferrin family, is one of the components of the immune system of the body by fighting against foreign invasion of bacteria and virus and lipid oxidation by inhibiting oxidation in a concentration-dependent manner even at concentrations beyond its capacity.

4. Metallotheinein
Metallotheinein, a family of cysteine-rich, low molecular weight proteins helps to bind both physiological heavy metals through the organosulfur compound of its cysteine residues. It also captures harmful superoxide and hydroxyl radicals by liberating the metal ions which were bound to cysteine.

5. Transferrin
Transferrin is a glycoprotein that binds iron very tightly but reversibly. It enhance the immune system in fighting against infection, inflammation by creating an environment low in free iron that impedes bacteria survival and cell oxidation.

6. Hemoglobin
Hemoglobin is the protein molecule in red blood cells that enhances the carrying of oxygen from the lungs to the body's tissues and return CO2 from the tissues to the lungs.
During oxidate stress, the cell membrane is protected by intraerythrocytic hemoglobin from the forming of free radical.

7. Myoglobin
Myoglobin is an iron- and oxygen-binding protein found in the muscle tissue of vertebrates. The binding of oxygen by myoglobin is unaffected by the oxidation or chain of oxidative reaction in the surrounding tissue, thus reducing the free radicals damage caused by oxidate stress.

8. Etc.
Chinese Secrets To Fatty Liver And Obesity Reversal
Use The Revolutionary Findings To Achieve 
Optimal Health And Loose Weight

Super foods Library, Eat Yourself Healthy With The Best of the Best Nature Has to Offer

Back to General health http://kylejnorton.blogspot.ca/p/general-health.html

Back to Kyle J. Norton Home page http://kylejnorton.blogspot.ca 

No comments:

Post a Comment